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in which z and y are the rectangular coordinates in the plane of the plate, z is
the thickness-direction coordinate measured downwards from the midplane; ,
# and % are the displacements in the z, y and z directions respectively, w is the
corresponding midplane displacement, and #, and 6, are the normal rotations
in the zz- and yz-planes respectively due to bending.

By making use of the assumption that o, = 0, the constitutive equations at a
typical point (z,y,2) in 2 Mindlin plate may be expressed as

c-Qe (2.2a)
where the stress vector ¢ has the form
o=lo.,0,,1,|" (2.2b)

the matrix of reduced in-plane stiffnesses for plane stress (i.e. assuming that
0. = 0) may be written as

Qll Ql? QIG
Q= |Qu2 Q22 Qu (2-2¢)
Qe Qi Qoo

the strain vector € is expressed as
€=[f.,0,,8, +0.]" (2.2d)
Using relations (2.1), (2.2d) may be rewritten as
€E=z¢ (2.2¢)

where
€ = [0,.1, ov.v' (al-l + av.n)]r (2'2!)

Note that 8, , = 90, /3z etc. The transverse shear stress-strain relations have
the form

r=0Cx (2.3a)
where the shear stress vector 7 is written as
Fafpslya® (2.3b)

The matrix of elastic constants C can be written as

— CC‘ C‘5
C= [ Cas C“] (2.3¢)

The vector of shear strains has the form

V=0 +d,, 8, +3,)" (2.3d)

Again, using expressions (2.1), the shear strain vector can be rewritten as
G E (2.3¢)

or
‘0 ~ lal + w.uv 03 + w‘:lT (23[)

For a Mindlin plate of thickness h and area A, the strain energy can be written
as

S.E.

LY A/2
1/2/( o edz)dA + 1/2/ (/ Y rdz)dA
A A Jan/2

~h[2
hj2
(

A2
1/2/"( € (°Q) ¢ dz)dA + 1/2/ € Ce, dz)dA

-h)3 -h)2

1/2/ e',’ D, ¢ dA+l/2/ € D, ¢ dAcr
A A

(2.4)
The plate constitutive equations can be written as
@y = Df €y (250)
where the bending moments are written as
o, =M, M,; M,,|” (2.56)
in which
h/2
(M., M,, M.,) = / W 0y o) B (2.:5¢)
-hf2
The matrix of flexural rigidities has the form
Dl 1 Dl 2 DIB
Df = D;g Dgg Dg(, (2.5d)
DH} D’.‘G DGB
in which
h/2
Diy = Q. #* dz (1,5 = 1,2,6) (2.5¢)
-5/2
Further, it is possible to write
0;:=D & (2.6a)
where the shear forces may be written as
o, =(Q,, Q.] (2.6b)




h/2

@ @)= [ (ur 1)t (2.6¢)

~h(2

The matrix of shear rigidities can be written as

D. — [S‘l 345]

2.6d
S Ses (34)

where
h/2
Si; = / Ci; dz (4,5 = 4,5) (2.6¢)

/3
Note that for specially orthotropic plates D,s, Dg;, Dys and Dy, = 0. For
homogeneous plates I;; and S;; may be evaluated from (2.5¢) and (2.6e), and
for sandwich, laminated and voided plates one can use formulae which are
given in Reference 3.

Note also that the strain resultants given in (2.2f) and (2.3f) are the direct
curvatures 8, , and @, , in the z and y directions respectively, the twisting
curvature (0, . + 6, ,) and the shear rotations (6, + w ) and (f, + w ) in the
yz- and zz—planes respectively.

The equations of motion for a Mindlin plate resting on an elastic Winkler
foundation of modulus K, subjected due to the uniform initial stress resultants
F, and F, may be written as

Q:+Q,,+Fw,, +Fw, + Kw+q=Pw (2.7a)
Mx.x + Mly‘y - Ql +m, = 161 (2'7b)
M,.+M,,-Q, +m, =10, (2.7¢)

in which g,m, and m, are the distributed lateral loads and couples. In (2.7),
differentiation with respect to z or y is denoted by a comma while differen-
tiation with respect to time is denoted by a superposed dot, and inertias are
given by

h/2
(P,1) = / o1, 2?)dz (2.8)
~h/2
The closed form solution given later in the chapter is concerned with simply
supported rectangular plates of uniform thickness with dimensions a and b for

which the boundary conditions are given as

w=0,,=0 z=0,a (2.9a)

w=40,,6 =0

y=0,b (2.9b)

5

- By combining (2.5a), (2.6a) and (2.7) the governing equations may be expressed

as
S&bol.x 5 5 (ssa + F])w,zz + S“a,,, + (S“ =t F,)w‘,, + Kw +q = Pw (2.100)

Dllox.:: " Dﬁcoz.rv = (Dl2 +DGB )ou.:y e Ss!-ox ro Ss&‘”.: + m, = 15: (Z'IOb)
(Dn + Due)ox,xu i Dcﬂov”ll + Dzzov.vv i 5446v =3 5|4w‘u +m, = 151 (2'10‘3)
For the closed form solution functions w,#8. and 8, are sought which satisfy
(2.9) and (2.10).
3. CLOSED FORM SOLUTION
3.1 Vibration Analysis

Here the closed form solution given by Dobyns |4] is presented for a simply
supported rectangular plate of uniform thickness, which has dimensions a and
b, and which rests on an elastic Winkler foundation. Solutions to equations
(2.10) that satisfy boundary conditions (2.9) are given as

I =0T &’ (3.1a)
0' - ¢;ﬂnc:u",.‘l (3.16)
w = Wmu e'w,....f (3.1‘:)
where
™" = A,,, cos(mnz/a)sin(nry/b) (3.2a)
" = B,,, sin(mnz/a) cos(nry/b) (3.28)
Ww™" = C,,, sin(mnrz/a)sin(nxy/b) (3.2¢)

Substitution of the assumed displacements (3.1) into the equations of motion
(2.10) results in
D“d’""' + Dgg¢m" + (Dlg + ch)¢mn - S55¢:”‘

z.3x EN T v.ey

— Sgs W = w2 _I9™*

(Dia +Dae) 87" + De®™", + Dya @70 — 5, 81" = S, WD* = —w?  IOT"

r.xy y.=x .y
Ses®T " +(Sss+F WD 485,800 +(Se+E )WL+ KW™" = —wi | Pv:""")
3.3
Upon substitution of (3.2) into the equilibrium equations of (3.3) it is possible
to obtain a set of homogeneous equations that may be solved for the natural
frequencies of vibration.

P2 (Pzz'wf,.,.l) Py

(Piy —wi o 1) Pra Pys Ans
(P3S _w:‘nP)

mn 0
Boo | =|0| (3.4)
Pys Py, 0




where

Py, = Dy, (mx/a)* + Dgg(nx/b)* + Sss

Pz = (Dyz + Dgo)(m= [a)(nx /b)

P, = Sss(mn [a)

P,; = Dyg(mn fa)? + Dyz(nw/b)* + Sia

Pys = Syy(nx/b)

Pys = (855 + F.)(mn/a)® + (S + F,)(nw/b)* + K (3.5)

Three eigenvalues and their respective eigenvectors result from (3.4) for each
m,n pair.

If the rotatory interia (/) is neglected (Mindlin [1] has shown that rotatory
inertia has little effect in isotropic plates and it is popularly assumed that the
same holds true for orthotropic plates), only one eigenvalue and its eigenvector
results for each m,n. The frequency of vibration is given as

w:\n = (QPSS - = 2P12P23P13 = PZGPIGS == PIIP::)/(PQ) (3'6)

where Q = (P, Ps,
frequency are

— P},) and the eigenvectors associated with the natural

Amu =Cmn(P12P23 —P23P13)/(P11P32_P122) (3‘70')

) mn(PI2PlJ "PuPu)/(PuPn e Pf:)
when normalised to C,,,,..

(3.76)

The orthogonality condition for the principal modes is given by

a b
(won = w,) / / (PW™"WPt 4 [@7" 820 + I®T @27 )dzdy =0 (3.9)
0 0

so that if m,n # p, ¢ then the integral is zero.
3.2 Stability Analysis

If a plate is subjected to uniform stress resultants F, and F, the frequency of
vibration will be either increased or decreased, depending on the direction of
the stress resultants. From (3.5) and (3.6) it is obvious that for the compression
the frequency of vibration will be reduced. Thus, when the frequency is zero,
either F, or F,, or a combination of both will be the critical buckling load. By
putting w,, . equal to zero in (3.6) the equation can be reduced to the form

Fe(mn/a)® + F,(nn/b) =R+ S (3.9a)

where
R=(2P,; P)s Pys — P33 P}, — P, P%) /(P Py — Fx) (3.95)
and
S = (Sus(mx/a)® + Syi(nx/b)? + K) (3.9¢)
Assuming that there are given ratios between the uniform stress resultants F,
and F, and the critical buckling load F so that

F, =aF (3.10)
F, = B8F (3.11)

the critical buckling load is given by
F..i. = (R + S)/la(mx[a)® + B(nx [b)?] (3.12)

3.3 Dynamic Transient Analysis

The solution to the equations of motion can be sought as a product of two
functions, a function of position and a function of time, as follows:

0. (z,y,t) = z Z 0" (z,y) Tnn (2) (3.13a)
0,(z,y,0) = ) ) @7 (z,4) T (1) (3.13)
w(z,yt) =D Y W™ (z,4)Tma(t) (3.135)

where T, () is a time dependent generalised coordination and ) implies a
summation from m = 1 to co. Substituting equations (3.13) into the equilib-
rium equations (2.10) and using (3.3) gives

o B M L AP N ER AT i (3.14a)
=Y N et T+ my =) ) et T, (3.14b)
(3.14¢)

=3 NTud WANT S gl P YN WL,

The distributed loads m,, m, and ¢ are expanded in terms of the generalised
forces Q,,, (t) as

M I =3 Qualt)®r"(z,y) (3.15a)
M 1= Qual(t)®]"(z,v) (3.155)
(3.15¢)

@/P=)") Qualt)W™"(z,9)



